The Role of Sub-Surface Oxygen in the Silver-Catalyzed, Oxidative Coupling of Methane
نویسندگان
چکیده
The silver-catalyzed, oxidative coupling of methane to C2 hydrocarbons (OCM) is shown to be an extremely structure-sensitive reaction. Reaction-induced changes in the silver morphology lead to changes in the nature and extent of formation of various bulk and surface -terminating crystal structures. This, in-turn, impacts the adsorption properties and diffusivity of oxygen in silver which is necessary to the formation of subsurface oxygen. A strongly-bound, Lewis-basic, oxygen species which is intercalated in the silver crystal structure is formed as a result of these diffusion processes. This species is referred to as O γ and acts as a catalytically active site for the direct dehydrogenation of a variety of organic reactants. It is found that the activation energy for methane coupling over silver of 138 kJ/mol is nearly identical to the value of 140 kJ/mol for oxygen diffusion in silver measured under similar conditions. This correlation between the diffusion kinetics of bulk -dissolved oxygen and the reaction kinetics of the oxidative coupling of methane to C2 hydrocarbons suggests that the reaction is limited by the formation of O γ via surface segregation of bulk dissolved oxygen. Catalysis over fresh silver catalysts indicates an initially preferential oxidation of CH 4 to complete oxidation products. This is a result of the reaction of methane with surface bound atomic oxygen whic h forms preferentially on high-index terminating crystalline planes. Reaction-induced facetting of the silver results in a restructuring of the catalyst from one which initially catalyzes the complete oxidation of methane to COx and water to a catalyst which preferentially catalyzes the formation of coupling products. This represents an extremely dynamic situation in which a solid-state restructuring of the catalyst results in the formation of a Lewis-basic, silver-oxygen species which preferentially catalyzes the dehydrogenation of organic molecules.
منابع مشابه
Effect of Additives on Mn/SiO2 Based Catalysts on Oxidative Coupling of Methane
The Oxidative Coupling of Methane (OCM) over M-Na-Mn/SiO2 catalysts (M=W, Cr, Nb and V) was investigated using a continuous-flow quartz reactor at 775°C, 1 atm and 100 cm3min-1 gas flow rates, and correlated with the observed structure and redox properties.The interaction effects of the metal-metal and metal-support on the...
متن کاملModeling of Oxidative Coupling of Methane over Mn/Na2WO4/SiO2 Catalyst Using Artificial Neural Network
In this article, the effect of operating conditions, such as temperature, Gas Hourly Space Velocity (GHSV), CH4/O2 ratio and diluents gas (mol% N2) on ethylene production by Oxidative Coupling of Methane (OCM) in a fixed bed reactor at atmospheric pressure was studied over Mn/Na2WO4/SiO2 ca...
متن کاملAPPLICATION OF ADAPTIVE NEURO FUZZY INFERENCE SYSTEM TO MODELING OXIDATIVE COUPLING OF METHANE REACTION AT ELEVATED PRESSURE
The oxidative coupling of methane (OCM) performance over Na-W-Mn/SiO2 at elevated pressures has been simulated by adaptive neuro fuzzy inference system (ANFIS) using reaction data gathered in an isothermal fixed bed microreactor. In the designed neuro fuzzy models, three important parameters such as methane to oxygen ratio, gas hourly space velocity (GHSV), and reaction temperature were conside...
متن کاملMiniplant-Scale Analysis of Oxidative Coupling of Methane Process
For more than three decades, Oxidative Coupling of Methane (OCM) process has been comprehensively investigated as an attractive alternative for the commercially available ethylene production technologies such as ethane and naphtha cracking. Developing a suitable catalyst and proper reactor feeding policy, reviewing and deploying the efficient methods in the separation and purification of the un...
متن کاملOxidative Coupling of Methane to Ethylene Over Sodium Promoted Manganese Oxide
Manganese oxide catalyst promoted with sodium and supported on silica exhibits fairly good activity and selectivity towards the synthesis of ethylene from methane at the optimum operating conditions. Methane and oxygen were fed into a tubular fixed bed reactor packed with catalyst under atmospheric pressure. The effects of temperature, residence time and feed composition on conversion, selectiv...
متن کامل